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It is shown that the fundamental polynomials for (0, 1, ..., 2m+1) Hermite�Feje� r
interpolation on the zeros of the Chebyshev polynomials of the first kind are non-
negative for &1�x�1, thereby generalising a well-known property of the original
Hermite�Feje� r interpolation method. As an application of the result, Korovkin's
theorem on monotone operators is used to present a new proof that the (0, 1, ..., 2m+1)
Hermite�Feje� r interpolation polynomials of f # C[&1, 1], based on n Chebyshev
nodes, converge uniformly to f as n � �. � 1999 Academic Press

1. INTRODUCTION

Suppose f is a continuous real-valued function defined on the interval
[&1, 1], and let

X=[xk, n : k=1, 2, ..., n; n=1, 2, 3, ...]

be a triangular matrix such that for all n,

1�x1, n>x2, n> } } } >xn, n� &1.

Then, for each integer m�0, there exists a unique polynomial Hm, n(X, f, x)
of degree at most (m+1) n&1 which satisfies

H (r)
m, n(X, f, xk, n)=$0, r f (xk, n), 1�k�n, 0�r�m.
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Hm, n(X, f, x) is referred to as the (0, 1, ..., m) Hermite�Feje� r (HF) inter-
polation polynomial of f (x), and it can be expressed as

Hm, n(X, f, x)= :
n

k=1

f (xk, n) Ak, m, n(X, x),

where Ak, m, n(X, x) is the unique polynomial of degree at most (m+1) n&1
such that

A(r)
k, m, n(X, xj, n)=$0, r$k, j , 1�k, j�n, 0�r�m.

The Ak, m, n(X, x) are referred to as the fundamental polynomials for
(0, 1, ..., m) HF interpolation on X, and the function

*m, n(X, x)= :
n

k=1

|Ak, m, n(X, x)|,

which is the Lebesgue function for (0, 1, ..., m) HF interpolation on X,
plays a fundamental role in discussion of the convergence of Hm, n(X, f, x)
to f (x) as n � �.

Now, H0, n(X, f, x) is the well-known Lagrange interpolation polynomial
of f (x). A classic result of Faber [3] states that for any matrix X, there
exists f # C[&1, 1] so that H0, n(X, f, x) does not tend uniformly to f (x)
on [&1, 1] as n � �. The initial motivation for considering (0, 1, ..., m)
HF interpolation for m�1 came from Feje� r's result [4] that if T denotes
the matrix of Chebyshev nodes,

T={cos \2k&1
2n

?+: k=1, 2, ..., n; n=1, 2, 3, ...= ,

and if f # C[&1, 1], then H1, n(T, f, x) � f (x) uniformly in [&1, 1]. Thus
the (0, 1) HF process has better convergence properties than the Lagrange
method, at least on the node system T.

For general (0, 1, ..., m) HF interpolation, Szabados [10] showed that if
m is even, then for any X there exists f # C[&1, 1] so that Hm, n(X, f, x)
does not tend uniformly to f (x) on [&1, 1] as n � �. However, if m is
odd, Sakai [9] and Ve� rtesi [11] obtained the following result.

Theorem A. If m is odd and f # C[&1, 1], then Hm, n(T, f, x) � f (x)
uniformly in [&1, 1] as n � �.
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(Ve� rtesi's result is actually more general than this, as he obtained uniform
convergence results for interpolation on the zeros of various Jacobi polyno-
mials, including the Chebyshev polynomials. This work has been subsequently
developed and sharpened in terms of so-called \-normal matrices X; see
Ve� rtesi [12].) These results illustrate the principle that even-order HF pro-
cesses tend to have similar properties to the Lagrange interpolation method,
while odd-order HF processes are akin to the original Hermite�Feje� r
method (i.e., to (0, 1) HF interpolation).

An important property of (0, 1) HF interpolation on the Chebyshev
nodes is that the fundamental polynomials Ak, 1, n(T, x) are non-negative
for &1�x�1. A discussion of this result and its subsequent use in the
original proof of Feje� r's uniform convergence result for the polynomials
H1, n(T, f, x) is given by Rivlin [8, Sect. 1.4]. However, there is a simpler
means of establishing Feje� r's result, which uses Korovkin's theorem on
monotone operators to take particular advantage of the non-negativity of
the fundamental polynomials. This approach is due to Korovkin himself,
and is discussed in, for example, Cheney [1, Sect. 3.3].

For (0, 1, 2, 3) HF interpolation, it is also known that the fundamental
polynomials Ak, 3, n(T, x) are non-negative for &1�x�1. This result is
due to Kryloff and Stayermann [6]. (See also Laden [7].) As a consequence
of the non-negativity of the Ak, m, n(T, x) for m=1, 3, the Lebesgue functions
*m, n(T, x) are given by *m, n(T, x)=�n

k=1 Ak, m, n(T, x). The right-hand side
is a polynomial of degree at most (m+1) n&1 which has value 1 and vanish-
ing first m derivatives at each of the n nodes, and since such a polynomial
is uniquely determined, it follows that if m=1, 3, then *m, n(T, x)=1 for
all x.

In this paper we generalize these results for (0, 1) and (0, 1, 2, 3) HF
interpolation to higher odd-order HF interpolation, as follows.

Theorem 1. If m is odd, the fundamental polynomials Ak, m, n(T, x) for
(0, 1, ..., m) HF interpolation on the Chebyshev nodes T satisfy

Ak, m, n(T, x)�0, &1�x�1. (1)

Corollary. If m is odd, the Lebesgue function *m, n(T, x) satisfies

*m, n(T, x)#1. (2)

Note that (2) improves Sakai's result [9, Lemma 3] that for odd
m, *m, n(T, x) is uniformly bounded with respect to x # [&1, 1] and n.

The proof of Theorem 1 is presented in Section 2. In Section 3, the non-
negativity of the Ak, m, n(T, x) is used in conjunction with Korovkin's
theorem on monotone operators to present a new proof of Theorem A.
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2. PROOF OF THEOREM 1

Suppose m is odd. By a result of Kre? [5, Theorem 1.1] there exists a
unique trigonometric polynomial Tm, n(%) of the form

Tm, n(%)= :
(m+1) n&1

k=0

ak cos k%+ :
(m+1)n

k=1

bk sin k%

so that

T (r)
m, n \j?

n +=$0, r$0, j , 0�r�m, 0� j�2n&1.

Because (Tm, n(%)+Tm, n(&%))�2 satisfies the same conditions as does
Tm, n(%), it follows by the uniqueness property of Tm, n that it is even, and
so

Tm, n(%)= :
(m+1) n&1

k=0

ak cos k%.

We now show that Tm, n is non-negative. In the interval [0, 2?), T $m, n(%)
has zeros of order m at j?�n, 0� j�2n&1, and (by Rolle's Theorem) has
a zero in each interval ( j?�n, ( j+1) ?�n) for 1� j�2n&2. This identifies
2(m+1) n&2 zeros of T $m, n(%) in [0, 2?), and since T $m, n(%) has degree
(m+1) n&1, we have identified all zeros of T $m, n(%) in [0, 2?). Note that
all the zeros of T $m, n(%) are of odd order, and so correspond to turning
points of Tm, n(%). The conditions Tm, n(0)=1 and Tm, n( j?�n)=0, 1� j
�2n&1, then imply that Tm, n(%)�0 for all %.

Next put %j, n=(2j&1) ?�(2n), and for 1�k�n, consider

tk, m, n(%)=Tm, n(%&%k, n)+Tm, n(%+%k, n).

Since Tm, n(%) is even, it follows that tk, m, n(%) is even, and so it is a non-
negative cosine polynomial of degree (m+1) n&1 which satisfies

t (r)
k, m, n(%j, n)=$0, r$k, j , 0�r�m, 1� j�n.

The result (1) then follows from the observation that

Ak, m, n(T, x)=tk, m, n(cos&1x).
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3. NEW PROOF OF THEOREM A

Suppose m is odd. Because of the non-negativity of the Ak, m, n(T, x) on
[&1, 1], Theorem A will follow from Korovkin's theorem on monotone
operators if it can be shown that

(i) Hm, n(T, 1, x) � 1 uniformly in x on [&1, 1] as n � �,

(ii) Hm, n(T, ,x , x) � 0 uniformly in x on [&1, 1], where ,x(t)=
(x&t)2.

With regard to (i), observe that Hm, n(T, 1, x) is the unique polynomial
of degree at most (m+1) n&1 which has value 1 and vanishing first m
derivatives at each of the n nodes, so Hm, n(T, 1, x)=1 for all x. Thus (i)
is immediately satisfied.

For (ii), we need to show that if %k, n=(2k&1) ?�(2n), xk, n=cos %k, n ,
and

9m, n(x)= :
n

k=1

(x&xk, n)2 Ak, m, n(T, x),

then 9m, n(x) � 0 uniformly on [&1, 1] as n � �. Explicit formulas for
the Ak, m, n(T, x) are, in general, quite complicated. However, Ve� rtesi [11,
Lemma 3.11] has shown that for fixed m, there exists a constant c so that
if we write

Ak, m, n(T, x)=(Ak, 0, n(T, x))m+1 :
m

i=0

ei, k, m, n(x&xk, n) i,

then

|ei, k, m, n |�{
c \ n

sin %k, n+
i

c
ni&1

sini+1%k, n

if i=0, 2, 4, ..., m&1,

if i=1, 3, 5, ..., m.

Thus

|9m, n(x)|�c :
n

k=1

(Ak, 0, n(T, x))m+1(x&xk, n)2 \1+
|x&xk, n |
sin2 %k, n +

_ :
(m&1)�2

i=0
\n(x&xk, n)

sin %k, n +
2i

.
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If Tn(x) denotes the nth Chebyshev polynomial (i.e., Tn(x)=
cos(n cos&1x), x # [&1, 1]), then

Ak, 0, n(T, x)=
(&1)k&1 Tn(x) sin %k, n

n(x&xk, n)
.

(See, for example, Rivlin [8, Sect. 1.3].) Thus

|9m, n(x)|�c
(Tn(x))2

n2 :
n

k=1

(Ak, 0, n(T, x))m&1 (sin2 %k, n+|x&xk, n | )

_ :
(m&1)�2

i=0
\n(x&xk, n)

sin %k, n +
2i

.

Now, if &1�x�1, then sin2%k, n+|x&xk, n |<3. Also, by a result of
Erdo� s and Gru� nwald [2], if x # [&1, 1] then |Ak, 0, n(T, x)|<4�? for all k
and n. Thus, for 0�i�(m&1)�2, we have

(Ak, 0, n(T, x))m&1 \n(x&xk, n)
sin %k, n +

2i

=(Ak, 0, n(T, x))m&1&2i (Tn(x))2i<\4
?+

m&1

,

and so

|9m, n(x)|�
3c(m+1)

2n \4
?+

m&1

.

Thus 9m, n(x) � 0 uniformly on [&1, 1] as n � �, and so (ii) is established.
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