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It is shown that the fundamental polynomials for (0, 1, ..., 2m + 1) Hermite—Fejér
interpolation on the zeros of the Chebyshev polynomials of the first kind are non-
negative for —1 <x <1, thereby generalising a well-known property of the original
Hermite-Fejér interpolation method. As an application of the result, Korovkin’s
theorem on monotone operators is used to present a new proof that the (0, 1, ..., 2m + 1)
Hermite-Fejér interpolation polynomials of f'e C[ —1, 1], based on n Chebyshev
nodes, converge uniformly to f'as n— c0.  © 1999 Academic Press

1. INTRODUCTION

Suppose f is a continuous real-valued function defined on the interval
[—1,1], and let

X={xp pk=12,.,mn=1,2,3,.}
be a triangular matrix such that for all #,
1>x1,n>xZ,n> >xn,n> -1

Then, for each integer m > 0, there exists a unique polynomial H,, (X, f, x)
of degree at most (m + 1) n— 1 which satisfies

Hi;,)n(Xaf;xk,n):éo,rf.(xk,n)a 1<k<na 0<r<m
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H,, (X, f, x) is referred to as the (0, 1, .., m) Hermite-Fejér (HF) inter-

m, n

polation polynomial of f(x), and it can be expressed as

Hm,n(X’ f’ X) = Z f(xk,n) Ak,m,n(Xa X),

k=1

where 4, ,, (X, x) is the unique polynomial of degree at most (m+1)n—1
such that

AP

o (X, X ) =00 0k}, 1<k, j<n, 0<r<m
The A ,, (X, x) are referred to as the fundamental polynomials for
(0, 1, ..., m) HF interpolation on X, and the function

;“m, n(X’ X) = Z |Ak,m, n(X’ x)|7

k=1

which is the Lebesgue function for (0, 1, .., m) HF interpolation on X,
plays a fundamental role in discussion of the convergence of H,, (X, f, x)
to f(x) as n — oo.

Now, H, (X, f, x) is the well-known Lagrange interpolation polynomial
of f(x). A classic result of Faber [3] states that for any matrix X, there
exists fe C[ —1, 1] so that H, (X, f, x) does not tend uniformly to f(x)
on [ —1,1] as n— oo. The initial motivation for considering (0, 1, ..., m)
HF interpolation for m > 1 came from Fejér’s result [4] that if 7" denotes
the matrix of Chebyshev nodes,

T= {cos <2k_ ! n>:k= 1,2,...m;n=1,2,3, },
2n

and if fe C[ -1, 1], then H, (T, f, x) = f(x) uniformly in [ —1, 1 ]. Thus
the (0, 1) HF process has better convergence properties than the Lagrange
method, at least on the node system 7.

For general (0, 1, ..., m) HF interpolation, Szabados [ 10] showed that if
m is even, then for any X there exists fe C[ —1, 1] so that H,, (X, f, x)
does not tend uniformly to f(x) on [ —1,1] as n— oo. However, if m is
odd, Sakai [9] and Vértesi [11] obtained the following result.

THEOREM A. If m is odd and fe C[ —1,1], then H,, (T, f, x)— f(x)
uniformly in [ —1,1] as n - oo.
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(Vértesi’s result is actually more general than this, as he obtained uniform
convergence results for interpolation on the zeros of various Jacobi polyno-
mials, including the Chebyshev polynomials. This work has been subsequently
developed and sharpened in terms of so-called p-normal matrices X; see
Vértesi [ 12].) These results illustrate the principle that even-order HF pro-
cesses tend to have similar properties to the Lagrange interpolation method,
while odd-order HF processes are akin to the original Hermite-Fejér
method (i.e., to (0, 1) HF interpolation).

An important property of (0, 1) HF interpolation on the Chebyshev
nodes is that the fundamental polynomials 4, ; ,(7, x) are non-negative
for —1<x<1. A discussion of this result and its subsequent use in the
original proof of Fejér’s uniform convergence result for the polynomials
H, (T, f, x) is given by Rivlin [8, Sect. 1.4]. However, there is a simpler
means of establishing Fejér’s result, which uses Korovkin’s theorem on
monotone operators to take particular advantage of the non-negativity of
the fundamental polynomials. This approach is due to Korovkin himself,
and is discussed in, for example, Cheney [ 1, Sect. 3.3].

For (0, 1, 2, 3) HF interpolation, it is also known that the fundamental
polynomials A4, ; (7, x) are non-negative for —1<x<1. This result is
due to Kryloff and Stayermann [6]. (See also Laden [ 7].) As a consequence
of the non-negativity of the 4, ,, (7, x) for m =1, 3, the Lebesgue functions
Ao, n(T, x) are given by 4, (T, x)=>7%_, Ay . (T, x). The right-hand side
is a polynomial of degree at most (2 + 1) n — 1 which has value 1 and vanish-
ing first m derivatives at each of the n nodes, and since such a polynomial
is uniquely determined, it follows that if m =1, 3, then 4,, (7, x)=1 for
all x.

In this paper we generalize these results for (0, 1) and (0, 1, 2, 3) HF
interpolation to higher odd-order HF interpolation, as follows.

THEOREM 1. If m is odd, the fundamental polynomials Ay ,, (T, x) for
(0, 1, ..., m) HF interpolation on the Chebyshev nodes T satisfy

Ak,m,n(Tax)ZOa _1<X<1 (1)

COROLLARY. If m is odd, the Lebesgue function 4, (T, x) satisfies
Do (T, x) = 1. (2)

Note that (2) improves Sakai’s result [9, Lemma 3] that for odd
M, A (T, x) is uniformly bounded with respect to xe[ —1, 1] and n.

The proof of Theorem 1 is presented in Section 2. In Section 3, the non-
negativity of the A4, ,, .(7,x) is used in conjunction with Korovkin’s
theorem on monotone operators to present a new proof of Theorem A.
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2. PROOF OF THEOREM 1

Suppose m is odd. By a result of Krel [5, Theorem 1.1] there exists a
unique trigonometric polynomial 7T, ,(0) of the form

(m+1)n—1 (m+1)n
T, 0)= > agcoskO@+ Y b,sinkl

k=0 k=1

(I)I<J >_50 50 J° O<’<”150<j<2” 1.
? n ’ ’

Because (7, (0)+T,, ,(—0))/2 satisfies the same conditions as does

m, n

T, .(0), it follows by the uniqueness property of T, , that it is even, and

m,n

SO

(m+1)n—1
T, .0)= >  accosko.

k=0

We now show that T, , is non-negative. In the interval [0, 2n), T, ,(0)
has zeros of order m at jn/n, 0 <j<2n—1, and (by Rolle’s Theorem) has
a zero in each interval (jz/n, (j+ 1) n/n) for 1 < j<2n—2. This identifies
2(m+1)n—2 zeros of T, (8) in [0, 2n), and since T, ,(0) has degree
(m+1)n—1, we have identified all zeros of T, ,(0) in [0, 27). Note that
all the zeros of T, ,(0) are of odd order, and so correspond to turning
points of T,, ,(0). The conditions 7, ,(0)=1 and T,, ,(jr/n)=0, 1<
<2n—1, then imply that 7, ,(6) =0 for all 0.

Next put 0, ,=(2j—1) n/(2n), and for 1 <k < n, consider

tk, m, n(0) = Tm, n(0 - Ok,n) + Tm, n(0 + ok,n)'

Since T, ,(8) is even, it follows that ¢, ,, ,(0) is even, and so it is a non-
negative cosine polynomial of degree (m+ 1) n— 1 which satisfies

10 nl0,)=00,0 ;,  0<r<m, 1<j<n

The result (1) then follows from the observation that

1

Ak,M,n(T’ x) = tk,m,n(cos_ X).
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3. NEW PROOF OF THEOREM A

Suppose m is odd. Because of the non-negativity of the 4, ,, (7, x) on
[—1,1], Theorem A will follow from Korovkin’s theorem on monotone
operators if it can be shown that

(i) H, T,1,x)—1 uniformly in x on [ —1,1] as n— oo,

(ii)) H,, (T, ¢,,x)—0 uniformly in x on [ —1,1], where ¢ ()=
(x—1)2

With regard to (i), observe that H,, (7, 1, x) is the unique polynomial
of degree at most (m+1)n—1 which has value 1 and vanishing first m
derivatives at each of the »n nodes, so H,, (7,1, x)=1 for all x. Thus (i)
is immediately satisfied.

For (ii), we need to show that if 0, ,=(2k—1) n/(2n), x; ,=cos O, ,,
and

Z X = xkn Ak,m,n(Tn x)a

then ¥, ,(x)— 0 uniformly on [ —1, 1] as n— co. Explicit formulas for
the A4, ,,. (T, x) are, in general, quite complicated. However, Vértesi [11,
Lemma 3.11] has shown that for fixed m, there exists a constant ¢ so that
if we write

m

Ak,m,n(Ts X) = (Ak,O, n(Tr x))m+1 Z ei,k,m, n(x_xk,n)i9

then
( " > it i=0,2,4, . m—1,
S]nok,n
etk,m,n|\ }’li71
S0, if i=1,3,5,..,m
Thus
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If T,x) denotes the nth Chebyshev polynomial (ie., 7,(x)=
cos(ncos!x),xe[ —1,1]), then

(=D ' T,(x) sin 0y,

Ay 0.l T, x) = n(x —xp )
k,n

(See, for example, Rivlin [8, Sect. 1.3].) Thus

( 2

|, n(X)[ < Z (Ag,0,n(T, %)™ 1 (sin® Oy + 3 — X ])

(m—1)/2 <n(x —X; n)>2i
X —_— | .

o sin 0,

Now, if —1<x<1, then sin®0, ,+ |x—x, ,| <3. Also, by a result of
Erdés and Grunwald [2], if xe[ —1,1] then |4, o (T, x)| <4/ for all k
and n. Thus, for 0<i<(m—1)/2, we have

n(x —xp ) \*
sin 0,

(Ao T, X))~ (

= (o<
and so

1% (x)|<3"’(’”+”<4>m_1.

2n 7

Thus ¥, ,.(x) — 0 uniformly on [ —1, 1] as n — oo, and so (ii) is established.
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